METHOD FOR CHANGE-POINT DETECTION IN PIECEWISE STATIONARY TIME-SERIES
نویسندگان
چکیده
منابع مشابه
Change-Point Detection of Climate Time Series by Nonparametric Method
In one of the data mining techniques, change-point detection is of importance in evaluating time series measured in real world. For decades this technique has been developed as a nonlinear dynamics. We apply the method for detecting the change points, Singular Spectrum Transformation (SST), to the climate time series. To know where the structures of climate data sets change can reveal a climate...
متن کاملMultiple Change-Point Estimation in Stationary Ergodic Time-Series
Given a heterogeneous time-series sample, it is required to find the points in time (called change points) where the probability distribution generating the data has changed. The data is assumed to have been generated by arbitrary, unknown, stationary ergodic distributions. No modeling, independence or mixing are made. A novel, computationally efficient, nonparametric method is proposed, and is...
متن کاملOnline Change Point Detection for Remote Sensing Time Series Online Change Point Detection for Remote Sensing Time Series
Lack of the global knowledge of land-cover changes limits our understanding of the earth system, hinders natural resource management and also compounds risks. Remote sensing data provides an opportunity to automatically detect and monitor land-cover changes. Although changes in land cover can be observed from remote sensing time series, most traditional change point detection algorithms do not ...
متن کاملNearly Optimal Adaptive Procedure for Piecewise-Stationary Bandit: a Change-Point Detection Approach
Multi-armed bandit (MAB) is a class of online learning problems where a learning agent aims to maximize its expected cumulative reward while repeatedly selecting to pull arms with unknown reward distributions. In this paper, we consider a scenario in which the arms’ reward distributions may change in a piecewise-stationary fashion at unknown time steps. By connecting changedetection techniques ...
متن کاملPiecewise Quantile Autoregressive Modeling For Non-stationary Time Series
We develop a new methodology for the fitting of non-stationary time series that exhibit nonlinearity, asymmetry, local persistence and changes in location, scale and shape of the underlying distribution. In order to achieve this goal, we perform model selection in the class of piecewise stationary quantile autoregressive processes. The best model is defined in terms of minimizing a minimum desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information systems, mechanics and control
سال: 2017
ISSN: 2519-2256,2219-3804
DOI: 10.20535/2219-3804162017100670